New reactive polymer for protein immobilisation on sensor surfaces.

نویسندگان

  • Dimitris Kyprianou
  • Antonio R Guerreiro
  • Iva Chianella
  • Elena V Piletska
  • Steven A Fowler
  • Kal Karim
  • Michael J Whitcombe
  • Anthony P F Turner
  • Sergey A Piletsky
چکیده

Immobilisation of biorecognition elements on transducer surfaces is a key step in the development of biosensors. The immobilisation needs to be fast, cheap and most importantly should not affect the biorecognition activity of the immobilised receptor. A novel protocol for the covalent immobilisation of biomolecules containing primary amines using an inexpensive and simple polymer is presented. This tri-dimensional (3D) network leads to a random immobilisation of antibodies on the polymer and ensures the availability of a high percentage of antibody binding sites. The reactivity of the polymer is based on the reaction between primary amines and thioacetal groups included in the polymer network. These functional groups (thioacetal) do not need any further activation in order to react with proteins, making it attractive for sensor fabrication. The novel polymer also contains thiol derivative groups (disulphide groups or thioethers) that promote self-assembling on a metal transducer surface. For demonstration purposes the polymer was immobilised on Au Biacore chips. The resulting polymer layer was characterised using contact angle meter, atomic force microscopy (AFM) and ellipsometry. A general protocol suitable for the immobilisation of bovine serum albumin (BSA), enzymes and antibodies such as polyclonal anti-microcystin-LR antibody and monoclonal anti-prostate specific antigen (anti-PSA) antibody was then optimised. The affinity characteristics of developed immunosensors were investigated in reaction with microcystin-LR, and PSA. The calculated detection limit for analytes depended on the properties of antibodies. The detection limit for microcystin-LR was 10 ngmL(-1) and for PSA 0.01 ngmL(-1). The non-specific binding of analytes to synthesised polymers was very low. The polymer-coated chips were stored for up to 2 months without any noticeable deterioration in their ability to react with proteins. These findings make this new polymer very promising for the development of low-cost, easy to prepare and sensitive biosensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Surface Chemistry for SPR based Sensors for the Detection of Proteins and DNA molecules

The immobilisation of biological recognition elements onto a sensor chip surface is a crucial step for the construction of biosensors. While some of the optical biosensors utilise silicon dioxide as the sensor surface, most of the biosensor surfaces are coated with metals for transduction of the signal. Biological recognition elements such as proteins can be adsorbed spontaneously on metal or s...

متن کامل

Surface plasmon resonance

4. LIGAND 10 4.1. Direct versus indirect immobilisation 10 4.2. Covalent immobilisation 11 4.2.1. A general approach 11 4.2.2. Choice of chemistry 12 4.2.3. Prepare the protein 12 4.2.4. Pre-concentration 12 4.2.5. Amine coupling 14 4.2.6. Regeneration 15 4.2.7. Adjusting the immobilisation conditions. 16 4.3. Non-covalent immobilisation (ligand capture) 16 4.3.1. Using an existing strategy 17 ...

متن کامل

Fabrication of an Electrochemical Sensor Based on a New Nano-ion Imprinted Polymer for Highly Selective and Sensitive Determination of Molybdate

In this work a new chemically modified carbon paste electrode was constructed for accurate, simple, sensitive and selective determination of molybdenum (VI) ions. The results of modified electrode by an ion imprinted polymer were compared with those obtained with carbon paste electrode. The results showed the stripping peak currents had a dramatic increase at the modified electrode. Under the o...

متن کامل

A New Potentiometric Sensor for Determination and Screening Phenylalanine in Blood Serum Based on Molecularly Imprinted Polymer

Methods routinely utilized for detection of phenylalanine in new-born blood consist of enzymatic assays, lacking sensitivity and HPLC assays which are expensive and time-consuming to conduct. We, here, report for the first time, the construction of a phenylalanine sensitive electrode, on the basis of a selective molecularly imprinted polymer, offering sensitivity, economy and ease of use for th...

متن کامل

A New Potentiometric Sensor for Determination and Screening Phenylalanine in Blood Serum Based on Molecularly Imprinted Polymer

Methods routinely utilized for detection of phenylalanine in new-born blood consist of enzymatic assays, lacking sensitivity and HPLC assays which are expensive and time-consuming to conduct. We, here, report for the first time, the construction of a phenylalanine sensitive electrode, on the basis of a selective molecularly imprinted polymer, offering sensitivity, economy and ease of use for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biosensors & bioelectronics

دوره 24 5  شماره 

صفحات  -

تاریخ انتشار 2009